# Challenges of capturing hearts and minds

### Key Concept:

The challenge of capturing hearts and minds when considering the future or when engaging in statistical analysis is best tackled through dialogue so that pupils can consider and articulate their thinking and teachers can tap in to their reasoning. With this in mind, perhaps a better start point might be:

'In this area it may rain tomorrow or it may not, and yet the probability that it will rain tomorrow is generally not 50% - discuss and explain your thinking with evidence.'

The expectation that pupils support the value they choose for a probability with evidence gives them the opportunity to reveal their understanding. This kind of reasoning with evidence needs to be modelled through critical dialogue between the teacher and the pupils.

One way to help pupils develop the skills of reasoning and explanation is to work more frequently on the mental aspects of handling data including probability. Explicit links can be made between the handling data cycle and the way we work with probability. There are useful parallels with the cycle both in examples where we use an experiment to find the estimate for a probability or where we solve a problem using theoretical probabilities. In addition teachers need to plan for discussions which compare theoretical and experimental methods: their appropriateness, drawbacks and advantages in particular circumstances.

It is clear that skill in using fractions, decimals and percentages as part of a probability calculation need to be considered as a precursor to tackling probability problems. In the main, however, progress in probability depends largely on understanding ideas, rather than acquiring further skills. Finally, as probability is an evaluation of what might happen in future, it is important to carefully choose language so that the event described is placed in the future.

### Key Processes

Representing: If pupils can represent data as part of a statistical enquiry then they are better positioned to become responsible citizens who can select and sift information thoughtfully and use mathematics with confidence to inform decision-making. Representation is a major focus of Probability, important in tying together the decisions pupils make at the different stages .

In a statistical enquiry, representing is part of almost all elements of the handling data cycle. It involves:

• Suggesting a problem to consider using Probability methods, framing questions and raising conjectures
• Deciding what data are relevant and identifying primary or secondary sources
• Designing ways of capturing the required data, including minimising sources of bias
• Creating representations of the data, including the use of ICT, for example, tabulation, grouping, arrays, diagrams and graphs.

### Analysing:

Mathematical reasoning is required at all stages of finding the probability of an event

• When specifying and planning by working logically, identifying constraints and considering available techniques; also by exploring conjectures and using knowledge of related problems
• When collecting data by working systematically, exploring the effects of varying values in situations where there is random or systematic variation
• when processing and representing data, making connections within mathematics and identifying patterns and relationships, and making use of feedback from different audiences
• when interpreting and discussing results, explaining and justifying inferences drawn from the data, recognising the limitations of any constraints or assumptions made; using feedback to reassess initial conjectures and adjust aspects of the handling data cycle.

Using appropriate procedures involves manipulating data into suitable forms for accurate representation, calculation and communication. This will involve monitoring the accuracy of methods and solutions.

Appropriate procedures in a Probability enquiry are:

• using systematic methods for collecting data from primary and secondary sources.
• To construct table, diagrams , etc to present data in an organised form.
• Calculating experimental and theoretical probabilities.

Interpreting and evaluating: Interpreting and evaluating results is fundamental to any statistical and probability enquiry. It includes:

• interpreting probabilities when assessing the likelihood of a particular outcome
• comparing distributions and making inferences
• looking at data to find patterns and exceptions
• considering the effects of changes to the data (e.g. removing outliers, adding items, making proportional changes)
• appreciating why the interpretations placed on data have a degree of uncertainty and can be misleading
• Appreciating convincing arguments, but knowing that these do not constitute proof.

Communicating and reflecting: Effective communication and reflection is of particular relevance in statistics. It includes:

• preparing a brief report of a Probability enquiry, using tables, tree diagrams ,etc to summarise data and support interpretations and inferences drawn from the data
• using precise language to summarise key features pertinent to the conjectures raised
• presenting support for conclusions in a range of convincing forms
• presenting a balanced conclusion where results are not convincing
• Considering alternative approaches if results do not provide sufficient evidence

### Range and content:

My first lesson out of four was with the use of number line and placing events on a scale along the line .The advantage of using a number line is to help pupil's form of understanding of scale and idea of place.

With years 8 students there is Importance in highlighting on the language of probability as there is a differing level of complexity to the questions covered in each book, but fundamentally there was continuing 'figure of speech' and consistent type of question.

The basic paradigms of tossing the coin, picking a card from a pack and rolling headed dice are used in all text books. There is a great stress on the fact that a probability scale runs from 0 to 1, and continues working with manipulation of simple fractions. It is vital to encourage the questioning in classroom as these attempts them to understand the results and investigate further. Finally, pupils are expected to make use of tree diagram, sample space diagrams, thus providing graphical representation of the probabilities of given outcomes.

### Lesson 1 : Number line

Give pupils a selection of statements on cards and ask them to sequence on a probability continuum such as this

Sequencing events according to their probability can reinforce the usefulness of the probability line as well as stimulating discussion about the relative chance of different events.

The probability of getting at least one six when two dice are thrown

The probability of getting a multiple of 3 when one dice is thrown

The probability of getting a tail and two heads when three coins are flipped

The task gives practice in assessing an awareness of the outcomes which are possible in each context. Pupils may choose to calculate or may wish to illustrate some of the outcomes. Either will help to justify their ranking of the events relative to one another. We are sometimes expected to appreciate the chance of one event relative to the chance of another, quite different event, for example, 'You are more likely to die crossing the road than...'

### Lesson 2: Matching

Linking different circumstances to a given probability is an activity based around the number and colour of otherwise identical counters in a bag. This engages pupils in working out the possible number and range of colours of counters in a bag given a certain probability such as those shown below. Initially the work is in pairs moving to larger groups to share thinking.

Together pupils should seek to find as many ways as they can of responding to the task, discussing results as a whole class with pupils taking on a critical role to discern similarities and differences between the solutions and to deduce the important features of the counters in the bag in order to satisfy the given probability. In other words, the joint thinking gives them the opportunity to generalise the solutions. To simplify the task, the number of possible colours could be limited. To extend it, consider giving the probability of an event not occurring, for example P(not Red) =1-P(red) =1- =

### Lesson 3: Tree Diagram:

This is a simple scenario which produces some unexpected results and so promotes further thinking about calculating combinations of outcomes.

One pupil sits on the middle chair of a row of seven:

an unbiased coin is flipped

a head means move one chair to the left

a tail means move one chair to the right.

Repeat the process twice more.

Pupils work in pairs to answer the question:

How many of the chairs is it possible to finish on after the three flips of the coin?

A 'tree diagram' could be used to build on the movement and visualisation to identify all possible sets of movement. It is interesting to discuss with pupils how the two forms of diagram both illustrate different aspects of the problem.

The ability to find and record all possible outcomes for successive events or a combination of two or more experiments is essential if pupils are to understand, find and use probabilities or estimates for probabilities in more complex situations

### Lesson 4: Using a probability fact

Two bags A and B contain identical coloured cubes. Each bag has the same number of cubes in it. An experiment consists of taking one cube from the bag.

The probability of taking a red cube from bag A is 0.5.

The probability of taking a red cube from bag B is 0.2.

All the cubes are put in an empty new bag.

What is the probability of taking a red cube out of the new bag?

Pupils should individually write down a 'gut' response and then compare their answers in small groups. The use of specific examples to answer the above will be useful but pupils need to share these and be encouraged to generalise.

What happens if the probability of picking a red cube is the same for both bags?

What happens if you change the probability of picking a red cube from each bag?

What happens if you change the number of red cubes in one bag? In both bags?

All stages of this problem demand that pupils identify the facts surrounding a situation. It has the potential to reveal misconceptions around probabilities of related events and offers the opportunity to generalise an outcome where the intuitive response is often incorrect.

### Personal Learning and Thinking Skills (PLTS):

In order to support the whole school improvement as part of National Strategies 'The Leading in learning programme' has been developed. My scheme of work is deliberately structured so that pupils look beyond subject confines to thinking and learning more generally. The main focus is on individual thinking ability and to encourage systematic development of thinking skills. The students should be able to transfer their learning across subjects and to other aspects of pupils' lives.

A fundamental understanding of probability makes it likely to understand everything from bowling averages in cricket to the weather report or your chances of being affected by snow! Probability is a significant area in mathematics because the probability of Particular actions happening or not happening can be vital to us in the real world.

Today the Probability theory used to make intelligent decisions in economics, Management, Operation Research, Sociology, Psychology, Astronomy, Physics, Engineering, and Genetics where risks and uncertainty are involved to draw a conclusion about the likelihood of events or values.

### Here are given some examples of probability:-

What are the chances that England Cricket team will win the series?

What is the Probability that it will rain tomorrow?

What is the probability about stability in Gas prices in next month?

Planning for inclusion: Show how your scheme of work plans for inclusion

### Assessment

With Increased attention being paid to the results of national test and external examination statistics being published to assess the performance of schools, the potential value of assessment for pupil is often overlooked. All too often assessment is seen as an impersonal, formal process which is done to pupils. Their progress is measured, attributed a grade or score, and this is then reported to others the assessment process appears to have little value for the pupils themselves. However, if assessment is to enhance learning then its formative purposes must be emphasized. The pupils need to appreciate how the assessment may contribute to their learning and become involved in acting on the information which the assessment has provided.

My main concern was assessing students learning, based on my efficiency on teaching the topic. Thus, my assessments need to be efficient and consistent with the prospect of pupil learning. I have chosen my medium of assessment to be formative as this would improve children's learning.

"The unique feature of formative assessment is that the assessment information is used by both teacher and students to amend their work to make it more efficient. There is little point in gathered facts unless it can be utilised, and since assessment information is sure to disclose diversity in the learning desires of a class, the outcome should definitely have some sort of differentiated teaching." (Professor Paul Black, 1995)

The formative assessment of my pupil development would consist of:

Assessment of Pupils descriptions and explanations given orally and by written work. The aspect for this assessment would include effective questioning, mental maths starters, class/home work and Plenary. Homework was set every Friday and collected in on Monday. As Tanner and Jones mention "Teachers assessment of students work is essentially an ongoing and informal activity consisting of asking questions, observing activities or evaluating progress. For such assessment to be formative there must be feedback into the learning process." Thus all the homework books were marked and given feedback on:

• A grade, according to schools homework marking policy
• A general comment(e.g. 'untidy work')
• An instruction (e.g., 'show your workings')
• A specific targets which indicates what needs to be done next in order to improve (e.g., 'revise your 8x table' ;)
• Correction of errors (e.g., in calculation,spelling,method)

Assessments of individual's performance in whole class activities/discussion or as a pair/group work. This would be assessed according to:

1. Shared communication which reflects pupil's confidence with probability
2. Understanding of the problem which reflects on the level of the work (using traffic light signal)
3. Working on task - which may be subjective by the aptness of my activities
4. Communication - using language of probability
5. Attitude - which may be subjective by the circumstance of the problem

The Framework that I have used for my formative assessment is one of the assessment strategies suggested by the APU. I have used only those strategies that can be easily adopted in classroom for evaluating and diagnosing the individual pupil's achievement.

Please be aware that the free essay that you were just reading was not written by us. This essay, and all of the others available to view on the website, were provided to us by students in exchange for services that we offer. This relationship helps our students to get an even better deal while also contributing to the biggest free essay resource in the UK!